EE 2403 SPECIAL ELECTRICAL MACHINES
AIM
To expose the students to the construction, principle of operation and performance of
special electrical machines as an extension to the study of basic electrical machines.
OBJECTIVES
To impart knowledge on
Construction, principle of operation and performance of synchronous reluctance
motors.
Construction, principle of operation, control and performance of stepping motors.
Construction, principle of operation, control and performance of switched reluctance
motors.
Construction, principle of operation, control and performance of permanent magnet
brushless D.C. motors.
Construction, principle of operation and performance of permanent magnet
synchronous motors.
UNIT I SYNCHRONOUS RELUCTANCE MOTORS 9
Constructional features – Types – Axial and Radial flux motors – Operating principles –
Variable Reluctance and Hybrid Motors – SYNREL Motors – Voltage and Torque
Equations - Phasor diagram - Characteristics.
UNIT II STEPPING MOTORS 9
Constructional features – Principle of operation – Variable reluctance motor – Hybrid
motor – Single and multi stack configurations – Torque equations – Modes of excitations
– Characteristics – Drive circuits – Microprocessor control of stepping motors – Closed
loop control.
UNIT III SWITCHED RELUCTANCE MOTORS 9
Constructional features – Rotary and Linear SRMs - Principle of operation – Torque
production – Steady state performance prediction- Analytical method -Power Converters
and their controllers – Methods of Rotor position sensing – Sensorless operation –
Closed loop control of SRM - Characteristics.
UNIT IV PERMANENT MAGNET BRUSHLESS D.C. MOTORS 9
Permanent Magnet materials – Magnetic Characteristics – Permeance coefficient -
Principle of operation – Types – Magnetic circuit analysis – EMF and torque equations –
Commutation - Power controllers – Motor characteristics and control.
UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS 9
Principle of operation – Ideal PMSM – EMF and Torque equations – Armature reaction
MMF – Synchronous Reactance – Sinewave motor with practical windings - Phasor
diagram – Torque/speed characteristics - Power controllers - Converter Volt-ampere
requirements.
TOTAL : 45 PERIODS
TEXT BOOKS
1. T.J.E. Miller, ‘Brushless Permanent Magnet and Reluctance Motor Drives’,
Clarendon Press, Oxford, 1989.
2. T. Kenjo, ‘Stepping Motors and Their Microprocessor Controls’, Clarendon Press
London, 1984.
REFERENCES
1. R.Krishnan, ‘Switched Reluctance Motor Drives – Modeling, Simulation, Analysis,
Design and Application’, CRC Press, New York, 2001.
2. P.P. Aearnley, ‘Stepping Motors – A Guide to Motor Theory and Practice’, Peter
Perengrinus, London, 1982.
3. T. Kenjo and S. Nagamori, ‘Permanent Magnet and Brushless DC Motors’,
Clarendon Press, London, 1988.
AIM
To expose the students to the construction, principle of operation and performance of
special electrical machines as an extension to the study of basic electrical machines.
OBJECTIVES
To impart knowledge on
Construction, principle of operation and performance of synchronous reluctance
motors.
Construction, principle of operation, control and performance of stepping motors.
Construction, principle of operation, control and performance of switched reluctance
motors.
Construction, principle of operation, control and performance of permanent magnet
brushless D.C. motors.
Construction, principle of operation and performance of permanent magnet
synchronous motors.
UNIT I SYNCHRONOUS RELUCTANCE MOTORS 9
Constructional features – Types – Axial and Radial flux motors – Operating principles –
Variable Reluctance and Hybrid Motors – SYNREL Motors – Voltage and Torque
Equations - Phasor diagram - Characteristics.
UNIT II STEPPING MOTORS 9
Constructional features – Principle of operation – Variable reluctance motor – Hybrid
motor – Single and multi stack configurations – Torque equations – Modes of excitations
– Characteristics – Drive circuits – Microprocessor control of stepping motors – Closed
loop control.
UNIT III SWITCHED RELUCTANCE MOTORS 9
Constructional features – Rotary and Linear SRMs - Principle of operation – Torque
production – Steady state performance prediction- Analytical method -Power Converters
and their controllers – Methods of Rotor position sensing – Sensorless operation –
Closed loop control of SRM - Characteristics.
UNIT IV PERMANENT MAGNET BRUSHLESS D.C. MOTORS 9
Permanent Magnet materials – Magnetic Characteristics – Permeance coefficient -
Principle of operation – Types – Magnetic circuit analysis – EMF and torque equations –
Commutation - Power controllers – Motor characteristics and control.
UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS 9
Principle of operation – Ideal PMSM – EMF and Torque equations – Armature reaction
MMF – Synchronous Reactance – Sinewave motor with practical windings - Phasor
diagram – Torque/speed characteristics - Power controllers - Converter Volt-ampere
requirements.
TOTAL : 45 PERIODS
TEXT BOOKS
1. T.J.E. Miller, ‘Brushless Permanent Magnet and Reluctance Motor Drives’,
Clarendon Press, Oxford, 1989.
2. T. Kenjo, ‘Stepping Motors and Their Microprocessor Controls’, Clarendon Press
London, 1984.
REFERENCES
1. R.Krishnan, ‘Switched Reluctance Motor Drives – Modeling, Simulation, Analysis,
Design and Application’, CRC Press, New York, 2001.
2. P.P. Aearnley, ‘Stepping Motors – A Guide to Motor Theory and Practice’, Peter
Perengrinus, London, 1982.
3. T. Kenjo and S. Nagamori, ‘Permanent Magnet and Brushless DC Motors’,
Clarendon Press, London, 1988.
0 comments:
Post a Comment