Sunday, June 19, 2011

EE2026 POWER SYSTEM DYNAMICS ANNA UNIVERSITY SEVENTH SEMESTER EEE SYLLABUS

EE2026 POWER SYSTEM DYNAMICS

AIM
To understand the concept of modelling the power system and the components for
simulating the transient and dynamic behaviour of power system meant for the stability
studies.
OBJECTIVES
 To review the modeling of synchronous machine, the excitation system and speedgoverning
controllers.
 To study small signal stability analysis of a single-machine infinite bus system with
excitation system and power system stabilizer.
 To study transient stability simulation of multimachine power system.
UNIT I INTRODUCTION 9
Basics of system dynamics – numerical techniques – introduction to software packages
to study the responses. Concept and importance of power system stability in the
operation and design distinctionbetween transient and dynamic stability - complexity of
stability problem in large system – necessity for reduced models - stability of
interconnected systems.
UNIT II SYNCHRONOUS MACHINE MODELLING 9
Synchronous machine - flux linkage equations - Park’s transformation - per unit
conversion - normalizing the equations - equivalent circuit - current space model - flux
linkage state space model. Sub-transient and transient inductances - time constants.
Simplified models (one axis and constant flux linkage) - steady state equations and
phasor diagrams.
UNIT III MACHINE CONTROLLERS 9
Exciter and voltage regulators - function and types of excitation systems - typical
excitation system configuration - block diagram and state space representation of IEEE
type 1 excitation system - saturation function - stabilizing circuit.
Function of speed governing systems - block diagram and state space representation of
IEEE mechanical hydraulic governor and electrical hydraulic governors for hydro
turbines and steam turbines.
UNIT IV TRANSIENT STABILITY 9
State equation for multimachine system with one axis model and simulation – modelling
of multimachine power system with one axis machine model including excitation system
and speed governing system and simulation using R-K method of fourth order (Gill’s
technique) for transient stability analysis - power system stabilizer. For all simulations,
the algorithm and flow chart have to be discussed.
UNIT V DYNAMIC STABILITY 9
System response to small disturbances - linear model of the unregulated synchronous
machine and its modes of oscillation - regulated synchronous machine - distribution of
power impact - linearization of the load equation for the one machine problem –
simplified linear model - effect of excitation on dynamic stability - approximate system
representation - supplementary stabilizing signals - dynamic performance measure -
small signal performance measures.
TOTAL : 45 PERIODS
TEXT BOOKS
1. P.M. Anderson and A.A.Fouad, ‘Power System Control and Stability’, Galgotia
Publications, New Delhi, 2003.
2. P. Kundur, ‘Power System Stability and Control’, McGraw Hill Inc., USA, 1994.
REFERENCES
1. M.A.Pai and W.Sauer, ‘Power System Dynamics and Stability’, Pearson Education
Asia, India, 2002.
2. James A.Momoh, Mohamed.E. EI-Hawary.“ Electric Systems, Dynamics and stability
with Artificial Intelligence applications”, Marcel Dekker, USA First Edition 2000.

0 comments:

Post a Comment