EE2027 POWER SYSTEM TRANSIENTS
AIM
To review the over voltages (or) surges due to the phenomena of switching operations
and lighting discharge. Also to study propagation, reflection and refraction of these
surges on the equipments their impact on the power system grid.
OBJECTIVES
To study the generation of switching transients and their control using circuit –
theoretical concept.
To study the mechanism of lighting strokes and the production of lighting surges.
To study the propagation, reflection and refraction of travelling waves.
To study the impact of voltage transients caused by faults, circuit breaker action,
load rejection on integrated power system.
UNIT I INTRODUCTION AND SURVEY 9
Review and importance of the study of transients - causes for transients.
RL circuit transient with sine wave excitation - double frequency transients - basic
transforms of the RLC circuit transients.
Different types of power system transients - effect of transients on power systems – role
of the study of transients in system planning.
UNIT II SWITCHING TRANSIENTS 9
Over voltages due to switching transients - resistance switching and the equivalent
circuit for interrupting the resistor current - load switching and equivalent circuit -
waveforms for transient voltage across the load and the switch - normal and abnormal
switching transients. Current suppression - current chopping - effective equivalent circuit.
Capacitance switching - effect of source regulation - capacitance switching with a
restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro
resonance.
UNIT III LIGHTNING TRANSIENTS 9
Review of the theories in the formation of clouds and charge formation - rate of charging
of thunder clouds – mechanism of lightning discharges and characteristics of lightning
strokes – model for lightning stroke - factors contributing to good line design - protection
using ground wires - tower footing resistance - Interaction between lightning and power
system.
UNIT IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF
TRANSIENTS 9
Computation of transients - transient response of systems with series and shunt lumped
parameters and distributed lines. Traveling wave concept - step response - Bewely’s
lattice diagram - standing waves and natural frequencies - reflection and refraction of
travelling waves.
UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM 9
The short line and kilometric fault - distribution of voltages in a power system - Line
dropping and load rejection - voltage transients on closing and reclosing lines - over
voltage induced by faults - switching surges on integrated system. Qualitative application
of EMTP for transient computation.
TOTAL : 45 PERIODS
TEXT BOOKS
1. Allan Greenwood, ‘Electrical Transients in Power Systems’, Wiley Interscience, New
York, 2nd edition 1991.
2. R.D.Begamudre, ‘Extra High Voltage AC Transmission Engineering’, Wiley Eastern
Limited, 1986.
REFERENCES
1. M.S.Naidu and V.Kamaraju, ‘High Voltage Engineering’, Tata McGraw Hill, 2nd
edition, 2000.
AIM
To review the over voltages (or) surges due to the phenomena of switching operations
and lighting discharge. Also to study propagation, reflection and refraction of these
surges on the equipments their impact on the power system grid.
OBJECTIVES
To study the generation of switching transients and their control using circuit –
theoretical concept.
To study the mechanism of lighting strokes and the production of lighting surges.
To study the propagation, reflection and refraction of travelling waves.
To study the impact of voltage transients caused by faults, circuit breaker action,
load rejection on integrated power system.
UNIT I INTRODUCTION AND SURVEY 9
Review and importance of the study of transients - causes for transients.
RL circuit transient with sine wave excitation - double frequency transients - basic
transforms of the RLC circuit transients.
Different types of power system transients - effect of transients on power systems – role
of the study of transients in system planning.
UNIT II SWITCHING TRANSIENTS 9
Over voltages due to switching transients - resistance switching and the equivalent
circuit for interrupting the resistor current - load switching and equivalent circuit -
waveforms for transient voltage across the load and the switch - normal and abnormal
switching transients. Current suppression - current chopping - effective equivalent circuit.
Capacitance switching - effect of source regulation - capacitance switching with a
restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro
resonance.
UNIT III LIGHTNING TRANSIENTS 9
Review of the theories in the formation of clouds and charge formation - rate of charging
of thunder clouds – mechanism of lightning discharges and characteristics of lightning
strokes – model for lightning stroke - factors contributing to good line design - protection
using ground wires - tower footing resistance - Interaction between lightning and power
system.
UNIT IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF
TRANSIENTS 9
Computation of transients - transient response of systems with series and shunt lumped
parameters and distributed lines. Traveling wave concept - step response - Bewely’s
lattice diagram - standing waves and natural frequencies - reflection and refraction of
travelling waves.
UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM 9
The short line and kilometric fault - distribution of voltages in a power system - Line
dropping and load rejection - voltage transients on closing and reclosing lines - over
voltage induced by faults - switching surges on integrated system. Qualitative application
of EMTP for transient computation.
TOTAL : 45 PERIODS
TEXT BOOKS
1. Allan Greenwood, ‘Electrical Transients in Power Systems’, Wiley Interscience, New
York, 2nd edition 1991.
2. R.D.Begamudre, ‘Extra High Voltage AC Transmission Engineering’, Wiley Eastern
Limited, 1986.
REFERENCES
1. M.S.Naidu and V.Kamaraju, ‘High Voltage Engineering’, Tata McGraw Hill, 2nd
edition, 2000.
0 comments:
Post a Comment